Industrial UAVs navigation

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have gained significant traction across various sectors, including agriculture, surveillance, logistics, and disaster management. A critical aspect of their operational success lies in their navigation capabilities. Effective UAV navigation systems enable precise positioning and maneuverability, allowing these vehicles to perform complex tasks autonomously or semi-autonomously.
UAV navigation is crucial for the operational efficiency and safety of drone missions. Reliable navigation systems, such as Inertial Navigation Systems (INS) and Global Navigation Satellite Systems (GNSS), enhance autonomy, allowing drones to perform complex tasks without human input. Accurate positioning helps prevent collisions and ensures compliance with no-fly zones, improving overall safety. Features like geofencing and automatic return-to-launch enhance risk mitigation. Additionally, precise navigation optimizes flight paths, reduces energy consumption, and enhances task execution, making UAVs more effective in applications like agriculture, surveying, and delivery by enabling them to efficiently cover large areas.

Home Vehicles Industrial UAVs

Essential technologies in UAV navigation

Several technologies are integral to the effective navigation of UAVs. Understanding these technologies is essential for comprehending how UAV navigation vehicles operate and excel in their missions.
Inertial Navigation Systems (INS) are pivotal for UAV unmanned navigation. They provide Roll, Pitch and Heading information which are fused with GNSS data for real-time robust navigation even in challenging conditions, near buildings or power lines for example. INS utilizes a combination of accelerometers and gyroscopes to calculate the UAV’s position, orientation, and velocity based on its movements. By continuously measuring acceleration and angular velocity, INS can maintain accurate navigation even in challenging conditions.
GNSS, including systems like GPS, GLONASS, and Galileo, provides critical positioning data for UAVs.
By utilizing cameras and other sensors, UAVs can perceive their surroundings and make informed navigation decisions. Sensor fusion combines data from multiple sources, such as INS, GNSS, and cameras, to enhance accuracy and reliability. This technology allows drones to recognize obstacles, identify landing zones, and navigate autonomously in complex environments.

Discover our solutions

Real-Time Kinematic (RTK) positioning for UAV navigation

RTK positioning enhances GNSS accuracy by using a network of base stations that provide correction data to the UAV.

This technology enables centimeter-level positioning, making it particularly valuable in applications such as surveying, mapping, and precision agriculture.

RTK-equipped UAVs can perform highly accurate tasks, improving the quality of data collected and the effectiveness of operations.

We provide state-of-the-art motion and navigation solutions tailored for UAV -unmanned aerial vehicles. Our advanced inertial sensors and navigation systems deliver precise positioning and reliable performance in various operating conditions.

Whether you require high-accuracy INS for complex aerial tasks or robust GNSS integration for enhanced positioning, our products ensure your UAVs operate at optimal efficiency.

With continuous monitoring and real-time data processing, our solutions empower UAVs to navigate autonomously while maintaining safety and reliability.

Navigation sensors that impact your UAVs performance

Choosing the right motion, navigation and control sensors impact directly UAV’s performance. This sensors vary widely in their specifications based on their intended application and operational environment.

Our MEMS based sensors are compact and lightweight witch make them ideal for UAV applications to minimize the overall weight of the vehicle.

With low power consumption, they extend the UAV’s flight duration consuming less than 1 watt.

These navigation sensors provide data at rates ranging up to 200 Hz, enabling real-time adjustments to the UAV’s flight path and behavior.

Ready to integrate cutting-edge navigation technology? Start your project with us today and achieve new heights.

Explore our solutions and find the right one that fit your needs.

Tell us about your project

Our strengths

Our inertial navigation systems offer several advantages for UAV unmanned vehicles, including:

High-precision in dynamic conditions Accurate attitude, heading, and position data even during high-speed or high-G maneuvers, criticals for UAV stability and mission success.
Compact and lightweight design Designed for size and weight constrained platforms to not compromise payload capacity while maintaining robust performance.
Resilient to environmental challenges Calibrated for extreme temperature ranges and resistant to vibrations to deliver consistent performance in diverse operational environments.
Post-Processing Support Post-mission data correction and analysis, enabling enhanced accuracy for mapping and surveying applications.

Solutions for industrial UAVs

Our solutions integrate seamlessly with UAV platforms, to deliver reliable performance in even the most challenging conditions.

Pulse 40 IMU Unit Checkmedia Right

Pulse-40

Pulse-40 IMU is ideal for critical applications. Make no compromise between size, performance, and reliability.
Tactical grade IMU 0.08°/√h noise gyro 6µg accelerometers 12-gram, 0.3 W
Discover
Quanta Micro INS Unit Right

Quanta Micro

Quanta Micro is a GNSS aided Inertial Navigation System designed for space constrained applications (OEM package). Based on a survey grade IMU for optimal heading performance in single antenna applications, and high immunity to vibrating environments.
INS Internal GNSS single/dual antenna 0.06 ° Heading 0.02 ° Roll & Pitch
Discover
Ekinox Micro INS Unit Right

Ekinox Micro

Ekinox Micro is a compact, high-performance INS with dual-antenna GNSS, delivering unmatched accuracy and reliability in mission-critical applications.
INS Internal GNSS single/dual antenna 0.015 ° Roll and Pitch 0.05 ° Heading
Discover
OEM Ellipse D INS Unit Right

OEM Ellipse-D

OEM Ellipse-D is the smallest Inertial Navigation System with dual-antenna GNSS, offering precise heading and centimeter-level accuracy in any condition.
Inertial Navigation System Dual Antenna RTK INS 0.05 ° RTK Roll/Pitch 0.2 ° RTK Heading
Discover
OEM Ellipse N INS Unit Right

OEM Ellipse-N

OEM Ellipse-N is a compact, high-performance RTK GNSS system offering precise centimeter-level positioning and robust navigation in dynamic, harsh conditions.
Inertial Navigation System Single Antenna RTK INS 0.05 ° RTK Roll/Pitch 0.2 ° RTK Heading
Discover

Download our leaflet

Our leaflet give you an overview of the products adapted to your application.

Case Studies

Discover the impactful success stories showcasing SBG Systems’ UAV inertial solutions. Uncover how our state-of-the-art navigation systems have revolutionized UAV operations across multiple sectors. Each case study presents real-world scenarios where our advanced inertial sensors and GNSS technology have achieved unparalleled accuracy, reliability, and performance.

Gain valuable insights and practical examples that illustrate how our solutions effectively address complex challenges and enhance operational excellence. Explore our case studies to see how SBG Systems’ UAV inertial solutions can elevate your projects and deliver exceptional results.

Chalmers

Formula Student Driverless – Chalmers Team to Choose SBG INS GNSS

Self-driving car

Chalmers Formula Car
Yellowscan

Perfect accuracy and efficiency in LiDAR mapping with Quanta Micro

LiDAR mapping

Yellowscan Chooses Quanta Micro UAV
Leo Drive

Ellipse powers autonomous vehicles innovation

Autonomous vehicles navigation

Leo Drives Test Autonomous Car
Discover all our case studies

They talk about us

Hear first hand, from the innovators and clients who have adopted our technology.
Their testimonials and success stories illustrate the significant impact our sensors have in practical UAV navigation applications.

BoE Systems
“We heard some good reviews about SBG sensors being used in the surveying industry, so we conducted some tests with the Ellipse2-D and the results were exactly what we needed.”
Jason L, Founder
Eberhard Karls Universität
“Ellipse-N was selected because it fulfills all the requirements and provides a unique balance of accuracy, size and weight.”
Uwe P, Dr. Ing.
University of Waterloo
“Ellipse-D from SBG Systems was easy to use, very accurate, and stable, with a small form factor—all of which were essential for our WATonoTruck development.”
Amir K, Professor and Director

Do you have questions?

Welcome to our FAQ section! Here, you’ll find answers to the most frequent questions about the applications we highlight. If you don’t find what you’re looking for, feel free to contact us directly!

Do UAVs use GPS?

Unmanned Aerial Vehicles (UAVs), commonly known as drones, typically use Global Positioning System (GPS) technology for navigation and positioning.

 

GPS is an essential component of a UAV’s navigation system, providing real-time location data that enables the drone to determine its position accurately and execute various tasks.

 

In recently years, this term has been replaced by a new term GNSS (Global Navigation Satellite System). GNSS refers to the general category of satellite navigation systems, which encompasses GPS and various other systems. In contrast, GPS is a specific type of GNSS developed by the United States.

What is UAV geofencing?

UAV geofencing is a virtual barrier that defines specific geographic boundaries within which an unmanned aerial vehicle (UAV) can operate.

 

This technology plays a critical role in enhancing the safety, security, and compliance of drone operations, particularly in areas where flight activities may pose risks to people, property, or restricted airspace.

 

In industries like delivery services, construction, and agriculture, geofencing helps ensure that drones operate within safe and legal areas, avoiding potential conflicts and enhancing operational efficiency.

 

Law enforcement and emergency services can use geofencing to manage UAV operations during public events or emergencies, ensuring drones do not enter sensitive areas.

 

Geofencing can be employed to protect wildlife and natural resources by restricting drone access to certain habitats or conservation areas.